Using Granularity Concepts for Discovering Causal Relations
نویسندگان
چکیده
Historically, causal markers, syntactic structures and connectives have been the sole identifying features for automatically extracting causal relations in natural language discourse. However various connectives such as “and”, prepositions such as “as” and other syntactic structures are highly ambiguous in nature, and it is clear that one cannot solely rely on lexico-syntactic markers for detection of causal phenomenon in discourse. This paper introduces the theory of granularity and describes different approaches to identify granularity in natural language. As causality is often granular in nature (Mazlack 2004), we use granularity relations to discover and infer the presence of causal relations in text. We compare this with causal relations identified using just causal markers. We achieve a precision of 0.91 and a recall of 0.79 using granularity for causal relation detection, as compared to a precision of 0.79 and a recall of 0.44 using pure causal markers for causality detection.
منابع مشابه
Granular Causality Applications: Using Part-of Relations for Discovering Causality
Causal markers, syntactic structures and connectives have been the sole identifying features for automatically extracting causal relations in natural language discourse. However, various connectives such as “and”, prepositions such as “as”, and other syntactic structures are highly ambiguous in nature, as they have multiple meanings besides causality. As a result, one cannot solely rely on lexi...
متن کاملAn Ontological Consideration of Causal Time in Qualitative Reasoning Systems
Human recognition of causal relations is based on recognition of time delay between the cause and the effect . Little, however, is known concerning temporal meaning of causal relations generated by qualitative reasoning systems . Aiming at explicit description of time concepts underlying the models and the causal reasoning engines, this article proposes a causal time ontology which defines a se...
متن کاملProbabilistic Computational Causal Discovery for Systems Biology
Discovering the causal mechanisms of biological systems is necessary to design new drugs and therapies. Computational Causal Discovery (CD) is a field that offers the potential to discover causal relations and causal models under certain conditions with a limited set of interventions / manipulations. This chapter reviews the basic concepts and principles of CD, the nature of the assumptions to ...
متن کاملThe Role of Textual Graph Patterns in Discovering Event Causality
We present a novel method for discovering causal relations between events encoded in text. In order to determine if two events from the same sentence are in a causal relation or not, we first build a graph representation of the sentence that encodes lexical, syntactic, and semantic information. From such graph representations we automatically extract multiple graph patterns (or subgraphs). The ...
متن کاملTimeSleuth: A Tool for Discovering Causal and Temporal Rules
Discovering causal and temporal relations in a system is essential to understanding how it works, and to learning to control the behaviour of the system. TimeSleuth is a causality miner that uses association relations as the basis for the discovery of causal and temporal relations. It does so by introducing time into the observed data. TimeSleuth uses C4.5 as its association discoverer, and by ...
متن کامل